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ABSTRACT 

THE PERFORMANCE EVALUATION OF A JET FLAP ON AN 
AOVANCEU SUPERSONIC HARRIER 

Larry Uean lipera 

July 1964 

The performance of the McUonnell Aircraft Company's concept 

of a supersonic vertical and short takeoff and landing (V/STOL) 

fighter, model 279-3, modified to utilize a jet flap has been eval

uated. Replacing the rear nozzles of the 279-3 with the jet flap 

favorably alters the pressure distribution over the airfoil and 

dramatically increases lift. The result is a significant decrease 

in takeoff di stance, an increase in payload, and an im~rovement in 

combat performance. 

To investigate the benefit in increased payloaa, the L79-j ana 

the jet flapped 279-3JF were modeled on NASA's "Aircraft Synthesi SOl 

(ACSYNT) computer code and flown on a 250 ft. takeoff distance inter

diction mission. The increase in payload weight that the £79-3JF coula 

carry was converted into fuel in one case, and in another, converted 

to bomb load. When the fuel was increased, the 27~-3JF penetrated into 

enemy territory almost four times the distance of the 279-3, and there

fore increased mission capability. When the bomb load was increased, 

the 279-3JF carried 14 bombs the same distance the 279-3 carried four. 

This increase in mission performance and improve~ents in turning rates 

was realized with only a small penalty in increased empty weight. 
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INTRODUCTION 

The propulsive design and integration of aircraft with v~rtical 

and short takeoff and landing capability rep~esents an arduous task. 

So much so that in the case of the early Harriers, Rolls Royce built 

its Pegasus engine first, and then an airframe was fit around it (the 

reverse design sequence used on almost all conventional ai rcraft). 

This extra effort is justified by the versatility gained by vertical 

and short takeoff and landing (V/STOL) capability. 

V/STOL capability allows aircraft to more successfully complete 

mission objectives. The AV-8B interdiction mission demonstrates this 

advantage. The objective of an interdiction mission is to disrupt 

and/or destroy the opposi ng forces' 1 ogi stics. Typical targets incl ude 

supply bases and roads, petroleum storage, airfields and communications 

centers. Conventional takeoff and landing aircraft (CTOL) require large 

runways that are labor and material intensive and therefore are located 

a considerable distance behind the front lines to ensure their safety. 

The AV-B8, not needing these elaborate runways, can be stationed very 

near the front 1 ine. The fuel constJT1ed by CTOL aircraft flying to the 

front line from their remote bases can be converted to payload for 

V/STOL aircraft such as the AV-BB, and this greater payload can be 

delivered at a higher frequency. If it is found, upon returning home 

from such a mission, that the airfield has been bombed, a vertical 

landing ensures the safety of the pilot and aircraft. 

1 
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V/STOL air power can al so deploy their forces more rapidly, and 

with a greater survivability. When immediate action is necessary, more 

V/STOL aircraft can be put into the air in a shorter period of time. 

These aircraft can also be recovered faster. This is a major advantage 

for Aircraft Carrier operations. In addition, survivability of the air 

force is enhanced by the application of multiple basing. If the mother 

ship is damaged, and unable to serve as an air base, the planes can be 

offloaded onto smaller ships, or even to portable landing pads on shore. 

Because of these advantages, the military has shown an interest 

in supersonic V/STOL aircraft. The Ames Research Center of NASA is 

responsible for overseeing the research and development of such con

cepts, and has issued contracts to various aircraft manufacturers for 

preliminary design investigations. 

One design by the Vought Corporation utilizes a tandem fan 

engine in which the fan and core turbine are able to operate in paral

lel and in series. In the parallel mode, each unit has a separate 

intake, and defl ects its exhaust by the use of turni ng vanes. Rotati ng 

the turning vanes redirects the fan air into the engine core for con

ventional series flow operation. 

The General Dynamic E-7 aircraft incorporates ejectors at the 

wing root to produce vertical thrust. For short field operations the 

flow from the rear nozzles is diverted into the ejector, which augments 

the thrust of the engines by entraining the surrounding air into the 

nozzl e flow and thereby increasi ng the to·tal thrust. Thrust augmen

tation ratios in excess of 1.5 have been demonstrated using this 

technique. 



Other methods investigated include the use of remote lifting 

engines operated only during takeoff and landing. One or more lift 

fans may be used with the possib1ity of injecting and igniting fuel 

in the downstream fan fl ow for an afterburner effect. 

3 

One of the more promising designs that resulted from these 

studies is the McDonnell Aircraft Company conceptual model 279-3 V/STUL 

aircraft (Figures 2 and 3). The 279-3 is a single seat, single enyine, 

supersonic fighter/attack aircraft incorporating a very advanced 

Pegasus engine similar to the engine used in the AV-88 (Figure 1). 

This engine uses four rotating nozzles to control the direction of 

the engine's exhaust. 

The AV-8B and 279-3, because of their Pegasus engines, are 

capable of superior maneuvering performance. The engine nozzles can 

be rotated past ninety degrees, providing rapid deceleration, or the 

el imination of acceleration in diving fl ight. In fact, no other air

craft can decelerate more rapidly (50 knots/sec) than the AV-8B. After 

decelerating, the pilot can accelerate quickly without the time loss 

associated with engine lag. In addition, judicious application of 

nozzle rotation can increase the instantaneous turn rate. Very impor

tantly, pilots can perform these maneuvers without giving away their 

intentions because, unlike airbrake extension, nozzle position is 

difficult for an opponent to gauge. 

As demonstrated in the Fa1kl and Is1 and confl ict, the versatil

ity of thrust vectoring makes aircraft with this capability excellent 

missile platforms. For missiles to be effective, the target must be 

oriented within a given cone forward of the launching aircraft. The 
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objective of aerial combat is to position the adversary within the 

missile~s envelope. The thrust vectoring and reaction control system 

of the AV-BS and 279-3 give them a distinct maneuvering advantage. A 

rapid deceleration can position a trailing attacking aircraft within 

the missile's launching envelope. An enemy outside of the missile's 

launching envelope and forward of the attacking plane can quickly be 

placed within the envelope by using the reaction control system or 

independent vectori ng to redirect the ai rcraft. Cl early, the extra 

maneuverability provided by the Pegasus engine makes the AV-8B and 

model 279-3 ominous adversaries. It is difficult to win in aerial 

combat against an adversary that is constantly pointing at you. 

The STOL and maneuvering performance of the 279-3 can be 

increased by using jet flaps. A pure jet flap is a device that 

allows high pressure air to exit from the trailing edge of the wing 

at selected angles relative to the freestream flow direction, thereby 

increasing 1 itt. A1 though other methods using various blowing tech

niques (Figure 4) are available for increasing lift, the jet flap was 

selected for study because it alters the original design of the 279-3 

the least, simplifies the perfonnance analysiS, and is well suited for 

such a modification. 

Unlike many fighters, the 279-3 1
.5 engine is located forward, 

at the root of the wing. Hence, it is a short distance from the 

engine to the jet flap, which minimizes the length of the duct feeding 

the flap, redUCing pressure losses. Since the rear nozzles that the 

jet flap replaces are situated at approximately mid-root chord, it is 

relatively simple to move the ducting, that once provided air to the 

rear nozzl es, into the jet f1 ape 
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In previous appl ications, the jet fl ap could not produce its 

maximum lift because of the lack of a system to generate large enough 

moments to bal ance the nose down pi tchi ng moment created by the jet 

flap. Jhese nose down pitching moments are generated when the jet flap 

is defl ected, because the center of the 1 itt generated by the bl owi ng 

is located a significant distance aft of the center of gravity. For 

the 279-3, the toward nozzles and the Reaction Control System can be 

used to produce the balancing moments necessary to achieve the maximum 

lift capability of the jet flap. 

The Pegasus engine ingests air through a large fan near the 

inlet. A portion of this air is directed through the core of the 

engine with fuel added and burned in the combustion chamber. This 

core air, along with some by-pass air, is directed through the aft 

nozzles. Some of the air that passes through the fan is directed 

through the forward nozzles. Fuel can be injected and ignited in 

the plenum chamber, and exhausted through these front nozzles for 

an after-burning effect (referred to as fan stre~n burning). This 

arrangement is desirable for the jet flap version of the 279-3 because 

it avoids the problems caused by passing high pressure, high terilpera

ture, after-burned air through the long, thin nozzle of the jet flap. 

The occurrence of the fuel being burned in the plenum chamber of the 

front nozzles also generates additional thrust to balance the negative 

(nose down) jet flap pitching moments. 

In thi s study, the perfonnance of the 279-3 wi th and wi tho ut 

a jet flap will be computed using an aircraft perfonnance code avail

able at the NASA-AMES Research Center, entitled IACSYN1", and other 
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theoretical/empirical methods, and compared to other aircraft. The 

purpose of this study is to demonstrate the benefits gained and penal

ties paid for the addition of the jet flap. This is accomplished by 

comparing aircraft takeoff distance, turn rates and radii, and mission 

performance. 



THE MODEL 279-3 

McDonnell Aircraft Company (McAir) has used their previous 

development experience on the AV-8B advanced Harrier in designing the 

model 279-3, as can be seen in the similarity of their design. 

Both the conceptual supersonic 279-3 shown in Figures 2 and 3 

(a brief description of the 279-3 geome~ry and performance is given in 

Table 1) and the operational AV-8B (Figure 1) utilize a unique engine 

incorporating four rotating nozzles to provide thrust vectoring. The 

fan and engine core air are directed through two nozzles forward and 

two nozzles aft of the center of gravity. In the case of the model 

279-3, these two pair of variable area nozzles can be rotated inde

pendently through one hundred degrees, measured from the lon~itudinal 

axis of the airplane. The 279-3 produces a significantly greater 

thrust than the AV -8B due to a 1 arger more advanced engi ne with fan 

stream burning. Modulation of the fan stream burning with independent 

vectoring provides pitch control for hovering and low speed flight. 

Low dynamic pressure, or nozzle rotation, also activates the reaction 

control system. With this system, thrusters located in the nose, 

tail ~ and wing tips, which utilize high pressure air bled from the 

engines, provide pitching, yawing, and rolling moments. 

The horizontal stabilizer for the 279-3 is a canard, located 

forward of the wing. Since moments created-by the wing are negative 

(nose down). a positive lifting force is required of the canard to 

balance these moments. This positive lifting force supplements the 

7 
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lift of the wing. In addition, since the wing ;s in the wake of the 

canard, at hi gh ang1 es of attack the canard·' s vortex interacts wi th 

the flow over the wing causing decreased separation and providiny an 

increase in lift and a decrease in drag. These and,other aerodynamic 

and propulsive improvements were made on the 279-3 design, and the 

result was an agile supersonic V/STOL fighter capable of taking off 

vertically wi th heavy loads, and fly; ng at speeds approach; ng twice 

the speed of sound. 



JET FLAP THEOR Y 

The pure jet flap used on the 279-3JF allows high pressure air 

to exit from the trailing edge of the flap, producing a long thin jet 

sheet across a portion of the wing span (Figures 4, 5, and 6). When 

expelled at angles below the freestream direction, this jet sheet pro

duces an increase in lift that is significantly greater than the lift 

obtained by thrust vectoring, with no drag increase and only small 

losses in horizontal thrust. 

To understand the method of lift augmentation, an analogy can 

be made between the mechanlca1 and the jet fl ap. The mechanical f1 ap 

increases the camber, and sometimes the chord of the wing, and increases 

lift when lowered. The jet flap expels a high velocity jet sheet from 

the wing's trailing edge that is, like the mechanical flap, a boundary 

between the upper and lower surface flows. This flow boundary favorably 

alters the pressure distribution on the airfoil. However, the lift 

produced by a jet flap far exceeds the lift generated by a mechanical 

flap. D.A. Spence (Reference 1) has related the strength of the jet 

sheet to a vortex sheet. Joukowski then relates the lift to the 

circulation through the relation 

L = pvr 

Because of thi s re1 ati onshi p, the extra 1 ift generated by the jet fl ap 

is frequently termed super-circulation lift. In addition, directing 

the high speed air in the jet flap downward creates a further increase 

9 
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in the vertical lifting force. In fact, lift coefficients of the order 

of four have been measured with jet. flap installations (Reference 2). 

Unlike the mechanical flap, no surface exists to transmit 

forces to the ai rfoi 1. Al so, the jet fl ap accel erates the fl ow in 

the boundary layer on the wing which tends to delay separation. For 

these reasons, the jet f1 ap has no skin friction drag or fonn drag. 

Therefore, the total drag of the wing with a jet flap is less than 

that of a mechanical fl ape 

As shown in Figure 7, the freestream flow field turns the jet 

sheet in the direction of fl ight. For inviscid flow, if the control 

vollJl1e is drawn large enough, you can conclude, .using momentlUll theory, 

that the change in momentun is independent of the deflection angle. 

This is referred to as thrust recovery. However, viscosity causes 

mixing of the jet sheet with the external flow and results in momen

tum losses. Also, at large deflection angles and blowiny coefficients, 

a separation bubble is created at the wings leading edge as explained 

in Reference 3. This separation causes a large reduction in thrust 

recovery, above that caused by the jet mixi ng. At small jet fl alJ 

angles, the momentum change is only sl ightly dependent on deflection 

angle and, therefore, only small losses in horizontal thrust can be 

expected. Thi sis true only for hi gh aspect ratio nozzl es which expel 

a long thin sheet of air. The low aspect ratio nozzles of the AV-BB 

and 279-3 experience negligible thrust recovery. Thus, the jet flap 

has the abiH ty to increase 1 i ft dramatically wi th no drag penal ty and 

very little thrust loss. 



THE JET FLAPPED 279-3 

The design principle followed in adding the jet flap to the 

279-3 was to minimize the configuration changes. Aerodynamic data 

exists for the 279-3 and can be used for the 279-3JF if the shapes of 

the two vehicles are essentially the same. 

As shown in Figures 5 and 6, the flap exhaust area spans .about 

one quarter of the wing, or the inner half of the existing flap. This 

exhaust region is a compromise between various design considerations. 

A long nozzle, blowing a large portion of the wing span increases the 

jet flap lift, but adds structural weight necessary to support the 

flap. The 17 aspect ratio nozzle (length divided by width) used in 

Reference 4 is a reasonable compromise between the above constraints, 

and was used on the 279-3. Keeping the exit area of the jet flap 

equal to the maximum exit area of the nozzle it replaced, resulted in 

a nozzle length of 4.5 feet and thickness of 3.1 inches. This nozzle 

was found to be so effective that not all of the extra lift could be 

utilized for increased payload and still stay below the maximum weight 

imposed on the airframe. Therefore,. no further advantage would be 

gained by using a higher aspect ratio nozzle. 

The large jet flap deflection angles and high speed airflow 

through the flap can cause leading edge separation. For this reason, 

the 1 eadi ng edge fl aps were repl aced wi th the more effective sl ats (no 

weight penalty assessed). The addition of the slats and the jet flap, 

and the elimination of the rear nozzles, were the only alterations 

11 
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made to the 279-3. The manufacturer"s pool i shed aerodynamic data for 

the 279-3 was then used for the 279-3JF, since the geometry of the two 

aircraft are essentially the same. 



PROCEDURE 

Takeoff Perfonnance 

Since one advantage of the model 279-3 is its ability to take

off in short distances carrying heavy loads, it is useful to evaluate 

the change in the perfonnance resu1 ting from the addition of the jet 

flap. To do this, lift, drag, thrust, and weight penalties or benefits 

of the jet flap must be estimated and superimposed on the known charac

teristics of the 279-3, given in Reference 5. 

Minimum takeoff distance is accomplished by rotating the 

279-3JF to its maximum lift coefficient, while simultaneously rotating 

the engine nozzles to predetermined angles, as soon as the aerodynamic 

lift and vertical thrust equals the weight of the aircraft. Estimating 

maximum lift coefficients is difficult because not all of the lift that 

can be produced by a high lift device is necessarily usable lift. The 

particular lifting characteristics and geometry of the wing, and the 

jet flap size and location must be considered. For example, theory 

might predict that tenfold increases in lift can be achieved with a 

jet flap, but tn reality the wing would stall long before reaching 

such large lift coefficients. The methods of Uavid J. Moorhouse 

(References 6 and 7) were used to estimate the maximum lift of the 

jet flapped 279-3, and take into account not only the design of the 

jet flap, but also the wing planfonn that. a is installed on. In his 

reports, David J. Moorhouse shows excellent correlation of his results 

with empirical data. His methods are applicable to wing aspect ratios 

13 
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IIgreater than approximately three,"6 and independent of sweep angle. 

The aspect ratio of the 279-3 is exactly three. Furthermore, he esti

mates the stalling characteristics of the jet flapped wing. Using 

Moorhouse's methods, the change in the maximum lift coefficient is 

given by 

LlC L = Kb [~< - C sin (as + 0)] + C sin (as + 0) 
u u max max u u 

Eq. 1 

where, 

I _ [Bonsu + Do 0][ AR + • 637C u 

'B7OC u] 
LlC

L - 5.51T B 
+ 2 + • 604 ;c:; + max 1 + ~ AR 

2 

Eq. 2 

LlC L is the change in the maximum lift coefficient for a full span 
max 

flap, and the terms containing the trigonometric sine are the lift com-

ponent of the jet flap's vertical thrust. The variaole Kb in equation 1 

takes into account the partial span of the jet flaps. In this design, 

with 0.246 of the wing span being blown, Moorhouse assumes Kb to be the 

constant 0.35. Cu is the thrust coefficient and ;s the ratio of the 

gross thrust of the jet fl ap to the dynamic pressure of the freestream 

times the wing area. A large thrust coefficient indicates a prominent 

jet sheet, projecting far into the freestream. a i s the power on 
Su 

stall angle of attack and 0 is the jet flap deflection angle. The 

term "power on" refers to conditions when the jet flap is operating. 

Power off conditions are without any blowing, and thus refer to the 

baseline 279-3. Bo and Do are Fourier co~fficients given graphically 

in Reference 6, and are functions of the thrust coefficient. Since 

graphical representations cannot be conveniently used in computer 
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programs, mathematical expressions were developed to represent Bo and 

00. These mathematical expressions are given by, 

B = 185 CO• 833 
o· u £q. 3 

00 = .3204 C~·6374 £q. 4 

shown in Figures 8 and 9. The relationship between a and a (the s s 
u 

power off stall angl e) is given by 

E.q. 5 

£q. 6 

The negative sign in equation 6 indicates that there is a decrease in 

the stall angle of attack, which al so occurs when a mechanicdl fl ap is 

defl ected. 

The only unknown in the above equation, given the flap angle 

and the aircraft velocity and gross thrust needed to determine the 

thrust coefficient, is as of the baseline 279-3. In addition, equation 

1 does not ,predict the maximllll 1 i ft coefficient, only its change due to 

the jet flap. Thus, CL max 
and added to equation 1. 

of the baseline 279-3 must also be determined 

The values of a and CL of the baseline 
s max 

279-3, are determined from information given in Reference 5, and are 

functions of the mechanical fl ap defl ection. Val ues of CL and as 
max 

for various deflection angles (6) were taken from Reference 5, curves 

were fit (see Figures 10 and 11), and the equations below were 

generated to represent the curves. 



a = -0.25010 + 0.5585 s 

= o + 4.03ij4 
2.4929 ( oin radians) 
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Eq. 7 

Eq. b 

Thus, CL given by equation 8 is added to ~CL (equation 1) to 
max max 

determine the total wing lift and vertical thrust of the jet flap. 

Adding this to the vertical thrust component of the front nozzles, 

the maximum lift and therefore the maximum takeoff weight is obtained. 

At the lift off point, there must be enough thrust to overcome 

drag and provide an acceleration. Thus, the drag of the aircraft at 

maximum lift must be determined. It was assumed that the drag of the 

279-3JF at CL was equal to that of the 279-3. As explained pre-
max 

viously, the jet sheet cannot transmit a drag force to the airfoil. 

In addition, the jet flap attains its maximum lift at much smaller 
(J 

angles of attack than the unblown wing, and the 279-3JF does not 

experience the parasite drag of the rear nozzles since they were 

eliminated. Thus, the assumption of equivalent drag at CL for 
. max 

both aircraft is conservative. Values of drag at CL max 
were obtained 

from information contained in Reference 5. This data was also curve 

fitted (Figure 12) and the equation of this curve was found to be 

Co = 0.461 + 0.265 /sin 0 ( 0 in radians) Eq. 9 

Equations 7, 8, and 9 are used in the computer program given in 

Figure 13 to determine the lift and drag at lift off, for various 

flap deflections. 
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Thrust recovery. as applied to jet flaps, refers to the ability 

of the jet flap to recover a large portion of the engine's thrust as a 

forward propelling force, even -though the nozzles exhaust is directed 

at angles to the freestream. Recovery of almost all the total thrust 

is possible at small thrust coefficients. or small deflection angles. 

However. the low takeoff speeds of the 279-3JF produce large thrust 

coefficients. and the maximum lift benefit can be achieved only at 

1arge deflection angles. Because of this, the thrust recovery is 

limited during takeoff, and only the trigonometric cosine of the 

deflection angle multiplied by the total thrust was used to propel 

the aircraft forward (i.e., zero thrust recovery). 

The performance of the 17 aspect ratio nozzle was assumed to 

be equal to the axisymmetric nozzle that it replaced. This assumption 

is supported by Reference 4, where a performance comparison was made 

between a 17 aspect ratio AUEN nozzle and a conventional axisymmetric 

nozzle. Taking into account leakage and pressure drop effects, the 17 

aspect ratio nozzle was found to be comparable in performance. The 17 

aspect ratio nozzle studied in Reference 4 had afterburners located 

inside the nozzle. which resulted in thrust losses when they were not 

in use. The 279-3JF does not have an afterburner in the jet flap 

nozzle. and therefore doesn't experience these thrust losses. 

No thrust penalties were assessed to the 279-3JF due to the 

added length of ducting required to divert the engine flow into the 

jet flap. Even if these losses were consldered, they would be rela

tively small because the rear nozzles of the 279-3 are already very 

near the proposed location of the jet flap, which minimizes duct 
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length and hence thrust losses. The engine performance of the 279-~, 

which is also applied to the 279-3JF, was developed by Reference 8 

(see Appendix A). 

Although i'-t is assumed that there is no thrust loss incurred 

by using the 17 aspect ratio nozzle, there is a weight penalty. Kefer

ence 4 estimates the 17 aspect ratio nozzle, with burner and other 

required- hardware, to weigh 488 1bf more than the axisymmetric nozzle. 

In the case of the 279-3JF, the engine fan air flowing through the 

forward nozzles is burned. Since the core air flowing through the Jet 

flap is not burned, the weight of the afterburner can be subtracted. 

The afterburner weight of an engine of similar size as the advanced 

Pegasus engine has been determined to be 184 lbf. The additional 

weight of the 279-3JF over the baseline ~79-3 is then 304 lbf. The 

bulk of this added mass is primarily the result of added internal wing 

structure to contain the high pressure exhaust flow. This 3U4 lbf 

weight penalty is used in all performance calculations. 

The additional lift, drag, thrust and weight of the ~7~-3JF 

are determined, and included to predict takeoff performance. This 

was accomplished by developing a computer code which included all of 

the applicable terms, and is shown in Figure 13. Given the takeoff 

velocity, this program calculates the maximum takeoff weight and the 

takeoff distance required to reach the given takeoff velocity. The 

methods previously described were used to estimate the maximum lift 

coefficient. However not all the lift computed in this manner is 

necessari1y usab1e lift. The aircraft must be ba1anced, the stall 

angle must be above the selected value of five degrees, and the 
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nozzles must not be rotated so far forward that there is insufficient 

thrust for acceleration. In generating the takeoff data, equivalent 

short takeoff techniques used by McAir for the 279-3 were used. The 

nozzles were positioned to ten degrees below horizontal until lift

off, and then were rotated to an angle which resulted in the lift 

being equal to the weight, with the logitudinal acceleration not 

allowed below 0.065g. 

To determine the maximwn balanced lift achievable, the front 

nozzles were rotated to the vertical, with maximum thrust incl uding 

burning, supplying their greatest positive pitching moment. The rear 

nozzles were rotated to the maximlJ11 deflection angle that WOuld balance 

the moments produced by the front nozzles. The moments produced by the 

jet fl ap resul ted from aerodynamic 1 i ft, which was asslJ11ed to act Cit 

the midpoint of the mean aerodynamic chord (Reference 1), the weight of 

the jet fl ap, and its vertical thrust component. Both the added weiyht 

and vertical thrust acted on the flap hinge line. The configuration 

was assumed neutrally stable, with the center of gravity and aero

dynamic center at the quarter chord posi ti on of the mean aerodynamic 

chord. A free body diagram depicting the forces involved in the 

balancing criteria is given in Figure 14. Note that due to the low 

takeoff speeds, and lack of data, the canard (or reaction control 

system) was not used for trimming. In practice, any canard lift 

would supplement the moments created by the front nozzles. This would 

permit the rear nozzles to be deflected further, allowing a greater 

lift to be generated. 
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With the front and rear nozzles' positions set by the balancing 

criteria, further adjustments might still have to be made. The jet 

flap, like the mechanical flap, increases the maximU1l lift of the 

aircraft. However, the angle of attack at which the maximum lift 

coefficient is attained is decreased. Because jet flaps are a much 

more powerful device than a mechanical flap, the decrease in stall 

angle is much greater. This is the reason why powerful leading edge 

devices are needed, such as the slats used on the 279-3JF. Slats were 

assumed to increase the stall angle by ten degrees (Reference 6). 

Considering this, the minimum stall angle was set at five degrees for 

the 279-3JF. If the stall angle was below five degrees, the rear 

nozzles were rotated up, decreasing the lift, and increasing the stall 

angle. 

In addition to the stall angle restriction, the longitudinal 

acceleration of the aircraft at lift-off could not be below 0.U659. 

Acceleration provides a build up of speed, necessary to increase lift 

above the weight so the aircraft will climb. The front nozzles are 

vertical for balance and lift and, therefore, provide no horizontal 

thrust to overcome drag. The 1 a rge rear nozzl e de fl ec ti on prov ides 

lift, but also limits the horizontal thrust component and increases 

drag. If not enough hori lonta1 thrust is provided by the rear nOlzl es, 

the front nozzles must be rotated aft. Although rotating the front 

nozzles away from the vertical decreases the lifting force, and 

pitching moment, it is still more desirab·1e to use the-front nozzles 

to provide sufficient acceleration than the rear nozzles. Rotating 

the rear nozzles aft significantly decreases the jet flap lift, which 

is a strong function of deflection angle. 



21 

Once the lift is determined that satisfies the balancing con

dition, the stall angle restriction and the acceleration requir~nent, 

the takeoff distance required to accelerate to the takeoff velocity 

can be detennined., If the initial velocity (Vi)' the final velocity 

(VF), and the acceleration (a) of a vehicle are known, the time (t) 

required to reach the terminal velocity can be determined from the 

simple physics equation 

v - V 
t = f i 

a 

The distance covered in this time interval can then be computed by 

mul ti plyi ng the time by the average vel oci ty. The only unknown is 

the aircraft ' s acceleration, which can be detennined frolil Newton ' sLaw. 

The net force used is the thrust of the engine minus the drag of the 

ai rcraft. The engine was assumed to produce its maximum sea 1 evel 

static thrust throughout the entire takeoff. Because of the low take~ 

off velocities, and thus negligible ram drag, this introduced little 

error. Since the total drag of the aircraft varies with the square 

of the velocity, and the velocity is varying, additional small errors 

were introduced by evaluating the drag at a constant velocity. 

The total takeoff distance, from a zero initial velocity to 

the takeoff velocity is divided into ten intervals. The acceleration, 

time, and distance covered in each interval is computed and the total 

takeoff distance is equal to the sum of all the distances covered in 

each interval. For example, if the take'off weight and distance is 

desired for a takeoff velocity of 100 ft/s, the computer pro9r~o first 



determines the maximum usable lift that can be obtainea at this speed. 

Then the takeoff distance is broken into ten velocity segments, each 

equal to 10 ft/s. The takeoff distance necessary to reach lU ft/s from 

a stationary position is computed, then the distance required to reach 

20 ft/s from 10 ft/s is determined, and this process is repeated for 

each of the ten intervals. The total takeoff distance is the sum of 

the distances computed in each of the intervals. 

Maneuvering Performance 

The lift augmentation provided by the jet flap not only bene-

fits takeoff performance but also improves turning rates. ~Iaxiralum 

instantaneous turning rates are directly proportional to maximum lift 

coefficients obtainable, ana are limited by the structural design of 

the aircraft. Since high angles of attack are usually produced in 

performing tight turning maneuvers, a component of the engine thrust 

that is equal to the sine of the angle of attacK will be added to 

increase" total lift. Therefore, all aircraft are capable of increased 

turning rates due to this effect, which is considerable at high angle 

of attack. The model 279-3, capable of rotating its thrust direction 

past ninety degrees, can place its total thrusting force parallel to 

the direction of lift, greatly improving instantaneous turning rates. 

In addition to the thrust vectoring ~enefit, the ~79-3JF produces 

higher C
L 

values due to the jet flap effect, which further in
max 

creases turning rates. 

In computing the 279-3JF ' s maximum instantaneous turn rates, 

the nozzles were rotated to an angle of ninety degrees (relative to 
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the fuselage centerline) minus the stall angle of attack. This placed 

the gross thrust in the direction of lift. The ~1oorhouse relatiorls for 

the change in the maximum lift coefficient at this jet flap deflection 

angle was added to the maximum lift coefficient of the 279-3 to deter-

mine the aerodynamic lift. The aerodynamic lift ana the gross thrust 

of the engine were combined to determine total 1 itt. Wi th the fl ight 

speed and aircraft weight known, the turning rates and radii were 

computed by using the equations shown below. 

£q. 10 

v2 
R =-.,...;.-.-g tan cp 

Eq. 11 

Note that instantaneous turning rate (TR) and radius (R) are inaepen

dent of drag. No jet flap thrust penalties were assessed. These 

equations were incorporated into a computer program to compute turnin~ 

rates and radii of the 279-3JF at various altitudes and speeds. The 

program given in Figure 15 computes desired values for a Mach n~nber 

of 0.4, and an altitude of 10,000 ft. In order to compare the turning 

performance of the 279-3 and 279-3JF, an aircraft weight of 26,260 lbf 

was used, consistant with Reference 5. For the 279-3JF, 304 lof of 

the aircraft weight consisted of the jet flap. 

Mission Performance 

The jet fl apped 279-3JF can takeoff, in a given distance, 

at a much greater takeoff weight than the 279-3. This extra weight 



translates directly into a greater payload. How much more useable 

payload, and its effects on mission performance was determined by 

computer modeling the 279-3 and 279-3JF, using the ACSYNT Program, 

and comparing the results obtained from numerous computer runs. 

ACSYNT is the NASA Ames conceptual/preliminary design FURTkAN 

program for Aircraft Synthesis. This program predicts the mission 

performance (fuel consumption, climb rates, cruise conditions, etc.) 

of an aircraft within five percent. ACSYNT is divided into numerous 

modules, or subprograms, each capable of the analysis of a specific 

aircraft characteristic. For example, in the aerodynamics module, 

the lift and drag characteristics are determined. For an accurate 

model, this module was adjusted to predict the aerodynamics of the 

279-3 given in Reference 5. The detailed weight statements requirea 

by the weight module are also given in Reference 5. The propulsion 

module must accurately predict the characteristics of the enyine over 

its entire operating cycle. Engine data was generated by Charles L. 

lola of NASA-Lewis, listed in Reference ~, using a Pratt and Whitney 

cycle analysis code. This data was input into ACSYNT's engine 

module. Once all of ACSYNT's modules are supplied with the correct 

data, the computer program accurately predicts the performance of the 

aircraft that is mOdeled. The modeled 279-3 is discussed in Appendix 

A. Due to similar geometry, the 279-3 and 279-3JF have the same 

aerodynamic characteristics, and no jet flap lift benefit was given 

to 279-3JF in cruise or climbing flight. "The only difference between 

the data for the 279-3 and 279-3JF was the 304 lbf weight of the jet 

flap. 
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Once modeled. each aircr-aft was run on a common mission. and 

the performance compared. The mission was a 2SU ft takeoff aistance 

interdiction mission shown in Figure 16. This STU mission is typical 

for V/STOL aircraft. and demonstrates the overwhelming advantage of 

the jet flap. The 279-3 was "flown" on this mission and its radius. 

weapons load and other parameters were determined. The 279-3JF was 

"flown" on this interdiction mission twice, once with the extra pay

load converted to fuel. and again with the extra weight converted to 

bombs and fuel. In the first mission, the increase in the mission 

radius over the 279-3 was determined. In the second mission. enough 

fuel was added to keep the radius equivalent to the 279-3 1 s radius. 

but with the weight benefit used to increase bomb load. The config

urations of the two aircraft for these missions is shown in Figures 

17, 18 and 19. 



RESULTS AND DISCUSSION 

Takeoff Performance 

The program given in Figure 13 was used to generate takeoff 

performance of the 279-3JF. The takeoff weight versus takeoff distance 

is compared for the 279-3 and 279-3JF in Figure 20, and demonstrates 

that the jet flap enables the 279-3JF to takeoff in a much shorter dis

tance for a given weight. At a weight of 54,000 lbf, the 279-3JF takes 

almost 1,000 feet less distance to become airborn, a aecrease by a 

factor of six. In actual operation, a given distdnce might be required 

for takeoff, such as the deck length of a ship. In this case the curves 

in Figure 20 show that for a fixed takeoff distance, the 279-3JF can 

carry a considerable increase in payload. The benefits of the increased 

payload are discussed in the following "mission perfonnance" section. 

Table 2 gives a more detailed output of the takeoff perfonnance 

generated by the compter code. Note that the aerodynamic lift coeffi-

cient increase of the jet flap given in this table does not include 

the vertical thrust of the jet flap nozzles. This data reveals that 

the rear nozzle angle is 41.3 degrees at 60 ft/s lift off velocity, 

increases to 69.3 degrees at 110 ft/s, then decreases at higher velo

cities. It is important to understand why the rear nozzles were not 

rotated beyond these values. 

The small jet flap deflection angle is due to the large thrust 

coefficient at low dynamic pressures. Since the stall angle is a 

function of the thrust coefficient, the aircraft stalls at low angles 

26 
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of attack. Thus, the rear nozzle rotation is kept small to satisfy the 

stall angle criterion. At velocities higher than 110 ft/s, much larger 

lift forces can be generated. However, the front nozzles can not 

balance the large pitching moment produced by the lift. If the lift of 

the canard was not neglected as was done here, it could aid the front 

nozzles in countering the pitching moment of the jet flap, and a greater 

lift benefit could be obtained. Thus, the jet flap was liloitea in its 

range by the stall angle at low takeoff velocities, and the balancing 

conditions at higher velocities. 

Combat Performance 

Figure IS shows the FORTRAN code used to compute the instanta

neous turning rate and radius of the 279-3JF at an altitude of 10,UOO 

ft and Mach 0.4. By inputing different values of velocity, density, 

thrust, and CL into this program, the maneuvering performance at 
max 

various Mach numbers was determined. It was assumed that the pitching 

moments created by the jet fl ap cou1 d be ba1 anced by the canard and 

front nozzles. 

The maneuveri ng performance of the 279-3 and 279-3JF are COIO-

pared in Table 3. The maximum power-off lift coefficients for the 

279-3 are given in Reference S. The increase in maximum lift due to 

the jet fl ap was then added to these val ues to detenni ne the total 

lift of the 279-3JF. The power-off lift coefficients given in Refer-

ence 5 were generated by deflecting the mechanical flaps. Ueflection 

of the mechanical flaps not only produce a greater lift on the wing, 

but also creates a nose down pitching moment. To balance the aircraft, 
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this moment is countered by canard surface lift. The extra lift of 

the wing and canard increases the rnaximllll instantaneous turning rates. 

However, the values of CL used by McAir were not based on balancing 
max 

the aircraft by deflecting the trailing edge flaps. For this reason, 

the performance given in Table 3 for the 279-3 is conservative. Even 

though the two aircraft are balanced differently, an interesting COIO-

parison can be made. 

At 10,000 ft and Mach 0.4, the aerodynamic lift coefficient of 

the jet flapped fighter is 2.27. The maximun lift coefficient of the 

279-3, even if the trailing edge flaps were deflected, is only 1.9. At 

the above altitude and flight speed, the 279-3JF would then generate 

over 25,800 1bf more lift than the 279-3, which ;s equivalent to a 

turning rate advantage of 4.3 degrees per second. 

Increases in maximum sustained turning rates are also obtained. 

In a maximum sustained turn, the pilot increases lift until the drag 

of the aircraft (a function of lift) equals the thrust in the direc

tion of flight. With thrust equal to drag, the turn can be sustained 

indefinitely, and the lift at the sustained condition determines the 

turning rate. 

Examination of Equations 1 and 2, which govern jet flap lift 

reveals that an increase in maximum lift is realized even at a zero 

flap deflection angle. This lift benefit is also realized at all 

angles of attack, which permits sustained turning rates to be 

determined. 

At 30,000 ft and Mach 0.6, 6CL is 0.033 wi th no fl ap defl ec
max 

tion. This extra lift corresponds to 2,267 lbf, and increases the 
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sustained turning rate. Small flap deflections would further increase 

the lift, while total forward thrust would be maintained through thrust 

recovery. However, there would be an increase in drag due to the 

mechanical flap deflection, which could result in a loss in 

performance. 

In order to compare the 279-3JF to current aircraft, Table 4 

is presented with instantaneous turning rates given for the 279-3JF 

and for other American and Soviet built fighters (Reference 9). This 

comparison shows that the maneuvering performance of the 279-3JF is 

far superior to present day, state-of-the-art fighters. 

Mission Performance 

It has been demonstrated that the 279-3JF can takeoff, ina 

given distance, with a greater payload than the 279-3. How much more 

useable payload, and its effects on mission perfonnance is deternlined 

by modeling each aircraft and comparing their AC::>YNT predicted perfor

mance on a typical mission. The mission selected was a 250 ft STU 

interdiction mission depicted in Figure 16. The takeoff distance of 

250 ft limited the 279-3 toa weight of 42,000 1bf (Figure 20). The 

279-3JF, however, can takeoff in the same distance weighing over 56,000 

lbf. Because McAir published their takeoff results only up to a yross 

weight of 54,000 lbf, this limit was also applied to the 279-3JF. At 

this weight, the 279-3JF ' s adjusted takeoff distance is only 211 feet 

(Figure 20). The extra 12,000 lbf (304 lbf of which is the jet flap) 

was then added to the jet flapped model in two forms. In one mission 

the extra payload was converted to fuel, and the increase in mission 
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radius was determined. In another, the payload was converted to bombs, 

and enough fuel was added to keep its radius comparable to that flown 

by the 279-3. The configuration and performance of the 279-3 and 279-3JF 

on the interdiction mission are yiven in Figures 17, 18 and 19. 

The 279-3JF is clearly the more effective aircraft. Carrying 

the same number of bombs and missiles, it penetrated 564 miles behind 

enemy lines, compared to 152 miles for the 279-3. This is an increase 

in mission radius by almost a factor of four. Keeping the mission 

radi us approximately the same by i ncreasi n9 the nllnber of bombs and 

the amount of fuel, the 279-3JF del ivered fourteen MK-82 bombs to tile 

same target that the 279-3 could deliver only four. Thus, with 39 feet 

less takeoff distance, the jet flapped 279-3JF increased the mission 

capability by either reaching enemy positions that the 279-3 could not, 

or by carrying ten more bombs to a common target. 

It should be noted that the mission perfonnance of the L79-3JF 

is conservative because equal lift to drag ratios (LID) were ass~leO 

for both aircraft. In practice, the jet flap increases the LID, which 

is a measure of aerodynamic efficiency. As shown in the turning 

performance section, the jet flap increases lift even with no flap 

deflection. At the cruise conditions for the comparison mission (Mach 

0.9,41,000 ft), the jet flap adds 1,738 1bf more lift. Knowing the 

lift and drag of the 279-3 (given by ACSYNT), the L/u for the 279-3JF 

was determined to be 7.36 at zero flap deflection. ACSYNT predicted 

the LID of the 279-3 to be 7.11. The 279-3JF is therefore more aero

dynamically efficient and its perfonnance ;s greater than predicted. 



Additional Jet Flap Benefits 

Al though no data was obtained, the jet flap has additional 

advantages. The jet flap al so reduces the infrared (IR) signature, 

which is a measure of thermal radiation. An aircraft with a larye 
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IR signature is easily revealed to enemy forces, and can be shot down 

by heat (IR) seeking missiles. The 279-3 already has a reduced IR 

signature because the hot engine components are shielded by the ang1ed 

nozzles. The jet flap has the potential .to suppress the IR signature 

further, due to the large exposed surface area of the jet sheet. Since 

heat transfer is directly proportional to surface area, large heat 

transfer to the cooler ambient air can be expected, reducing the tem

peratures, and thus the IR Signature. 

Another consideration is the effects of the jet on ground crew 

and 1 andi n9 pads duri n9 takeoff and 1 anding. The hi yh temperature and 

velocity of the jet can hinder ground crew operations and quickly des

troy 1 anding surfaces. The severi ty of these effects \'IOul d be reouced 

with the cooler, less concentrated jet sheet. 



CONCLUSION 

The purpose of this study was to evaluate the benefits and 

penalties for the addition of a jet flap on the advanced supersonic 

Harrier model 279-3. The jet flap is a device that expels a 10ny thin 

sheet of air along the span of the wing, increasing lift. The jet 

flapped 279-3JF was compared to the 279-3 on the basis of takeoff 

performance, maneuveri ng performance and mi ssi on performance. The 

conclusions drawn from these comparisons are as follows: 

1. The jet flap enabled the aircraft to takeoff in a much snorter 

distance for the same weight, or in the same distance, but 

carrying a greater payload. 

2. The lift benefit of the jet flap increased instantaneous 

turni ng rates and decreased turni n9 radi;. S;mi1 ar improve

ments in sustained turning rates and radii can be expected. 

3. Mission performance was increased. On a 25U ft interdiction 

mission, the 279-3jF could either deliver more bombs to the 

same target as the 279-3, or deliver the same number of bombs 

to a target that is out of the V9-3 1 s range. 

4. The infrared signature is reduced. 

5. Landing pad wear is reduced, and a safer environment is 

provided for the ground crew. 

It has been shown that there is a lot to gain by adding a jet 

flap to the 279-3. However, in order to realize the jet flapls fullest 



~J 

potential, the entire aircraft should be designed around the jet flap, 

instead of merely adding it onto the existing oesign. Three consider

ations demonstrate this point. 

First, the sizing of the aircraft should be reassessed. In this 

.design, all the added lift could not be utilized as payloaa, because 

the gross takeoff weight, a structural limitation, would be exceeded. 

This indicates that the engine and airframe are not properly matched. 

Reducing the size of the engine would maintain the original performance 

of the 279-3, while decreasing fuel consumption. Also, en1argin~ the 

airframe would properly match the airframe to the engine. A design 

study should be made to select the best possible methoo to resize the 

aircraft. 

Second, the jet flap increases lift even at zero deflection 

angle. In cruise, the added lift creates moments that must be counterea 

by control surface deflections. Since surface deflections produce aray, 

this trim drag can cause a significant loss in aeroaynamic efficiency. 

With judicial wing/canard placement and by redistributing the weight, 

this trim drag could be reduced. 

Although the 279-3JF clearly demonstrates the tremendous advan

tage of the jet flap, its full potential could not be realized. Even 

though independent vectoring of the front nozzles provide large posi

tive moments necessary to balance the aircraft, the jet flap rotation 

was still limited at high velocities because of the balancing condi

tions. This suggests that a better design would be a tandem winy air

craft, with jet flaps located on both wings. Each jet flap could then 

be used to its fullest potential with the moments createa on each winy 



balanced by the other. This again points out the importance of the 

airframe/jet flap match, and the need to develop the aircraft around 

the jet fl ap. 

The final decision on whether to incorporate a jet flap into 

a design should be based on the trade offs involved. The addeu ver

satility is gained with only a slight weight penalty and (although 

not considered in this study) a thrust loss. However. the extent of 

this added versatility must be examined. If STUL performance is not 

required the jet flap would lose some of its advantage. Also, since 

the jet flap increases aerodynamic lift, and therefore requires a 

flow about the wing, no lift benefit would be realized for vertical 

takeoffs. Thus, the decision to incorporate jet flaps into a design 

should be based on whether the increase in versatility justifies the 

added complexity and cost. 
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TABLE 1 

SUMMARY OF AIRPLANE CHARACTERISTICS 

279-3 

Wing 

Area 

Aspect Ratio 

Taper Ratio 

Leading Edge Sweep 

Vertical Tail 

Area 

Fuselage 

Length 

Canard 

Area 

Weights (in lbf) 

Max iml.l11 Gross 
(250 ft STO) 

Max imum Gross 
( VTO) 

Empty 

Internal Fuel 

Propulsion System 

Thrust 

Maximum Afterburning 
(sea 1 evel static, 
standard day) 

428.4 ft2 

3.0 

0.25 
45° 

65. ° ftL 

56. ° ft 

85.6 ft 

42,000 

29,840 

18,827 

10,061 

4,415 

38,420 lbf 
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aReference 6 

FIGURE 4- Powered Flap Concepts 
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Jet Sheet being turned by, and parallel to, the freestream flow 

FIGURE 7 (from Reference 3) 

Method of Thrust Recovery 
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TAIO!OFF VELOqiTY. - . ., 

VARIADLE LISTING: 

V=TAKEOl?Fi.VELOCITY 
VI:: INl'l'IAL>"VJ~LOCITY FOl\ l'nlmATION 
V2=FlNAL'VELOCI'l'Y Fon ITfEnATION 
VD=VELOCITY.lNClU!l'lElni 

... 

VEL=VELOCITy.:'uSEj)/Fon.>GnQUi~D RUN CALC. 
TJIIo'llNT::I"IlOfIT,:,rWZZLE;CnOiJS .:ruHU8T 
'l'UUEttG= llEAlf :NOZZLE<al~)f3G TuilUfn' . 
TlUo'N=NI!.'1" F:ltQNT N9ZLE ':l'Hl\Ua,r . 
TOTI'I1::TOTAI;,:·,'IUliJ8T .' FOR. '(llWOND nUN CALCULA'I'I ON 
TURN = NET 'Ri!!AU NOZZLE: .'i'IiftUST 
l~=CALCULATEO. ~IA}{Hiti['I !1'i\Ki!:Ol"I~ UEICHT 
1<'1.'1= Ii0I1EN1": · ... il\<m· Im<uhi. IioizLI~ . 
ruI=}l10N~lfr:I~Ror'1 m:AH no:!.zjj( + JE'I'FLAI' LIFT 
LHIIT"L01-$R,1.IHl1'~.ON lA'i'EilAL ACcELEllATION < =u/g) 
ACC = ACCELEnAT I ON 
x=cnOUNDllUffPEIl VI~LOel'l'Y INTERVAL 
O=DllAG PEl\ V"~L<ICI'I{Y: IN'fEllVAL 
}{,f=TOTAL 'GI\OUfm HUN 
T=TIME 
Q=OYNAl'lI C }'lmDDom: 
vnW=VEt\TICi\.L 'flaWST OF l"HOi'l'l' NUZZLE 
!J=HI NG AUEA 
nJIO:::ATHOtH'mm J C lij~l iU 1 'i'1' 
U=IJTEPIJ I ZE' FOil CIWIJNn HI;'.I.,I. CALC 0 LA'l' 1 ON 
Dll~l\'=DlJo'l~I!:l\l!'J'I':l!: 1ll!':i'liE.l~n ia':'.WlIHW & COH1'U'l'KU liun. '1'HltU8T 
CD= IJHAG (;OEiiil" I C J l~HT 
D=TOTAL oniw 
1"=I'l1!:T TllllU~J:hnG FHHCB<TlIiWU'l'-lJollAC) 
lI'I1I= IlGH • 'l'UIlUGT AT 'i'l: n;:HL"\<' 
LACCn.= LATI!:1\AL M:(Jl!.LEl.\l~'f 1\jll HATlO 

FIGURE 13- Takeoff Performance FORTRAN Computer Program 

~~ -."e 
0% 
~~ 
,o-ti c: ~I 
j>·t) 
r·,Ii;' 
=1,';', 
<~' 

~ 
\0 



C 
<.: 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
G 
C 
C 
C 
C 
t: 
C 
C 

FIRST=IDENTIFIES IF IqIlST.ITTEUATION PER VELOCITY CALC. 

I NFLP" I ",~~:~; J1'E LO()P ~::~NT~t. ' 
MOORf!:HQUSE VARIABLES 

KD:::PARTIALH~PAN FAcToR:,:,:" 
nO=FouRftIt~·C(U!l".FJCl'E~1" " 
DO::: FOUR I EltR:COEFii'.(CIENT, ' 
DCLMXP" DELTA:, cJ. (ffAX iA:P.IU ME 
DELALF=cUANGE '1 N;:'ANGLt. 'O'F~"A'rrAQK :DUE TO JET FLAP 
DCUL\X=DE4T.~; CLU1J\j{)''f:{C1;lA,NG~'';Jft~~: CL 
DCLJF"CllANGE~, IN 'A,ERODYNANlC'''LIFT' ( NO 1'ImlENTUl'I TEIDI ) DUE TO 

, :: JE1tf:PApi:~,1~':.';::;';":;< ", ',',., ,', ,
CLl'IAX;:MJU(H'1Ul:I ~ I.n:: ~PQ,E;fi".I c lENT 
,CJ ACU=THRUS1"'COEl':~lClENT ,:~,(,'::' , 
AU'AO'r;iPOWJm'-;:m'I,'-'STALt;:;4NGLE".OF'·ATTACI< 
ALFAU=POWR"-OCi Emilll'.>lJ\N.GLE ,'Ot:::;A1TACl( 
DELTAR=REAa ' Nozil~E}ft.«Gt.E (l\ELATiv~LTO A I nCRAFT CENTIillL I NE) 
DELTAF"'lt'RONT NO'ZZLE';:ANGct'(UELATIVit:TO A IRCRAli'T, CENTEULlfll!:) 

. . ~,:. '. , .. -. . " . ,. '.' . 

C >::*****************************:::**':r,**;~;j::i::)::;:*****************~:*},~*:I::;:*:;:*:!:** 
e 
c 
c 
c 
c 

C 

C 

*DECLARATIONS* 
REAL no, DO, DELTA It • ALFI'.U ,ALlt'AH, Ul!:LAU' ,DcumJ> ,C.J 
nEAL A, B, VCMmnr, I(Q',; v., Uf:uiAx, (~Uil\)C lU!();,'1'lli"ltNT , \,1 ,8 
ilEAL DELTAF', TIIJU!Jlq ;J>'EUu>, TlUlI,fi Hi!:I ili'U; A~FAl!D , J)CLJ F 
HEAL VIDF, TO'M'U, VE(.(:ll) ,IH I U';Jl ,~('t' ;LACClt:;X( 11) ,um 
ll.EAL a, n·t, lUI, T, l~ ( 1'1;) : A(;C, D I i"f" ,L ll'IiT, CI)'<i 1 ) 

INTEGEll. N ,L,K, I ,J ,1", IIWLl' 
LOG I CAL }t'11\&'1' 

:/: I NIT I ALI ZATI ON:;: 

It' I Ub"1'= • TIl.UE • 
H::O 
1.=0 
K=0 

FIGURE 13 (cont.) 

~~ 
-o§ Oz 
0)::1. 
::01-

.-0'1:1 eo ~!I 
,"S' (.,) 
C··tfi . , 
::i ,..", 
"'" U) 

<.n 
o 



C 

c 
C 

J=0 
P=0 
I NI·'LP=0 
VI =60. 
V2=128. 
VD=8. 
DELTAR=1.57079 
DELTAF= 1.57079 
111FRNT=24431 • 
TIlRERG=13989. 
IWO=.002377 
V=Vl 

5 Q=.fS*RII0*(V**2.) 
K8=.35 
8=428.4 

TlIRN=TIIRERG 
CJ=TllRN/(Q*8) 
TDFN=THFRNT 
TOTTII= (TIIRN+TlIFN )*C09 ( • 174(3) 
V'nlF'=THFN 

G *CALCULATE l'lAXLIFT AU l'l!:R I'lOOlUIOU8EREPOIlT* C ~. '. . . 
C 

Co 
C 

no= . 185*<CJ** .833) . 
DO=.3204*<CJ**:6374) 

10 N=N+l '. . ... ;:." ... ;j ..... 
ALFAO=-.2601*DtLTAR+~733· 
A=<Do:i:ALFAO+DO*DEtTAR)/(ffno/2.> 
D~LALf:=- ,:5*~:;J:';~~:,:\{!,;t~,j.~:' . . .. ,:>'. . 
AU'AU.=PJ,i:ULF+ALF:A9i~t . :i;'· "t· ..' 

DOl (3 ~'+";. 6~'r.C-! )/.'<"~::;{:t,;';&.0~.~~~~(~H )\!:'.;076*CJ ) 
~CLMXP= 6, :1*3(. ~~,t52.~Al!'I1.,.;.;,:{.:k::{.,.' "'," 
vcr10I1R?C~:l:SIlf.(1)~TAntA,tfAl>-\~;':\~':·' :.,P . . 

l}ClJIlAX=K8:IC (DOLJJXP~:v.CHOl,m')L+vCHOHlt. ,: 
CUlAX= (DELTARf.~"t0:j'81ij·:12';:~92·9, 0.;:· 
U' <DELTAR ',tt;e'jTIJENi ":,',:,
l'l\INT*.· DELTAn<i}"::""'.::' '. 
(;UTO 150 
l!:NDU' 

FIGURE::: 13, (cent) (J1 .... 



c 
c 
c 

c 
c 

*CALCULATE 1'10MENTS AND BALANCE A I RPLANE* 

12 Fl'l=<VTIlF)*4.75 . 
rul= (DCLMAK-VCMOMR>*Q:J:S*3 .314 

+ +6 .2*TIDl.N*SIN(DELTAR+ALJI'AUj-304. :/:6.2 
IF(FM; ;LT. ruf)THEN'\~r ',' 
DELRD= DELTAl\* 57 .296:", 
11~(L' .m. 0)WRITE(6\ 1 15)DELlU) 
L::L+l', ' ", -,' " 
DELTAR=DELTAR-.0043633 
GOTO 10 
ENDIF 

c *l'lAX STALL ANGLE 010' A'nAClC 'SET AT 5 DEGREES* C ' 
C 
C 

c; 
C 
4: 
C 
to: 

G 
C 

c 
c 

U' (ALFAU .LT.' .om;21)Till!;N 
Jl.' (K .00. O)WRIJ'Ef~, 120) 
K=K+I ' '. " 
DEL1'AR=DELTAR-.OO'43633 
GOTO 10 
ENDIF 

*CALCULATE T~OFF "fEIGl1T:jc 

\'1= (CLMAX+DCUtAX)*Q:J:~+V'I'lIl~ 
.:; 

DI~LRD=DELTAl\*57 .296 
ALFAUD=ALFAU*57.296: ' 
I)l!:LFD= DELTAl<'*57:Wi'6' 
BCLJF=DCLT1AX-VCMoiin. 
11Ho'L)::; I 1'lIo'LI'+ (: .. "' .. ::,'.:, 
H' ( 11''110' L)' • CT. ',' 90 ) cwo 1 GO 
mliTE (100) " , " ::'~<,>. :,' '" ' 
\'IIU'1'E «(J, 1IO)V :DELUJ), m:u·'J.) ,ALFAUD,DCLJfo', \,1 
110' (P • EQ. 1 ) GOTO (50, ' , 

FIGURE 13 (cont.) U'1 
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C *DEGIN CALCULATION OF TAKEOFF DISTANCES* 
C 
C 

C 

C 

C 
C 

B=V/10. 
XT=0. 
VEL(I)=0. 
DO Hi 1=1,10 
J=I+l 
VEL(J)=I1*1 

15 CONTINUE 

DIFF=0. 

DO 26 N=1 t 10 .: ..... . 
CD( N) =. 461 .... 265*SQRT(S I N <DELT:AR) ~. 
D(N)=CD(N)*.6*nnO*<VEL(H+U**2.):J:S 
i"<Ii);'ToTm-D(Nf"" ',. ,', .. 
ACC=F(N)*32.174/W 
T=IVACC 
}{(N)=( (VEL(N+l >+VEL<N) )/2. )*1' 
XT=XT+X(N) 

25 CONTINUE 

C :/:HAKE SURE A/G> .065<SUFJ.'ICIENT LONGITUDINAL ACCELERATION)* C . . . 
C 

C 

IF (I~InsT)DELTAF= 1. a70,(%-ALl"AlJ 
llTU=TllllN*COS (DELTAH.+ALl"AU) -l} ( Hi) +TUFN:I:COS (DELTAli'+AU'AU) 
LINIT=.065*W -
1 (i'(IlTU . LT. LHIIT)'I1lEl~ 
DIFI<'=LIMIT-llTII . 
J)ELTAI"=ACOS ( (COSfDELTA[o":'ALFAU >*THFIH'l) In,' )/'l'lllo'N) -AU'AU 
V'fIlF=TIJIo'N:l:S [N (DELTAF+ALFAU') . , 
"/=''1- (TUJo'N-VTlU') 
\'IlHTE«(i,114) 

111, lo'OHNAT <111 ,'DRAG TOO HI G ,IlO'fAT I HG 10'. NO:lZLE UACK' ) 
1"IIlST= . FALSE. 
GOTO 12 
ENJ)U' 

'FIGURE.13 (cont.) 
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C 

r. 
c 
c 
c 
<: 
c 

f.: 
C 

116 
2 
3 
4 
5 
() 

7 
I) 

117 
~ 

100 
~~ 
a 
. ~. 
I' 
~ 

\) 
'( 

110 
~ 

fIG 

t :~O 
Iti0 

,> 
.:.. 

LACCR=HTH/32.174 
DELRD=DELT~57.296 
DELFD=DELTAF*57.296 
WRITE(6,116).·. . . '. . 
lv'lUTE(6 ,117)XT, W, VEL( 11) ,DELRD;DELFD,·DHO)"HTH 
FORJIIAT (' ',37X,', REAR' ,7}{,:tF.n~)J.~T!,:;~ ;{~;pc,·'t,l\IQ;OF:r: .. ' ,16K, 
, TAKEOFi'" ,6X., ·'I(()~.l!E~ , uX;·: .. lJ~9~~~~~:;';tp{):~i·rr~]nn., 3~, 
• TAKEOI~F' ,/ ,2?".:'i~HSTANCE'·T4"·.;.' W~I.qwr.1};'~~·'j'\WEL.OCITY· , 
5X, ' ANGLE' ,6X, ' AIiq~\ ,6X, ' .. DRI,l:G,'·:~;r~'i:H~.()I,\{:TlffiUST':', / , 
~X, ' (I,Vr)' ,OX ,.'. (L~f.);' ·;'6X .. ' .(~IVt3) • ;8X~:' (DEG) , ,6K, ' (DEG)' , 
6X,' (LBI") , ,'lX, ' (LBF)'., / ;2}r, '----.,.-~,.,.:.';4X, ,------, , 
5X,'--------'·,5X,!-----~~;~X,!---~---',4X 
, ' --------, ,5X, " ;..~---, .;') . 

1,'OlUIAT(' ',2K,I~6; 1 :,UX,Ii'7.1, 5X,Fa. J ,UX,l~ij. 1. 
uK, .'lL 1 , 5X, F7 • 1 ,5X, F', . 1 • / / ) . 

*Loor TO UPDATE l~E\"l Tl\KIWl"F VELOCI'l'Y 3 RECALCULATE 
TAKEOF}<' D I DTANCE , ETC " :1: 

Il~ (V • LT.,V2 )TIIEN 
V=V+VD 
OELTAl\=1.570796 
1.=0 . 
K=0 
10' IlillT= • 'l'llUE. 
GOTO 5 
Iwon' 

FOHNAT(' ',17K,'REAI\' ,(,~r,'l"HOnT' ,/,IGX,'lWZZLE' ,4}(, 
'HOZZLE' ,4K,' STAl.I./ j/ ,~m,' VELOCITY' ,~)i{,' MH~LE' , 
em, ' ANGLE' ,GX, 'AI"QLE.~ ,'(n~,' CLH:~r' ,,(i~~, ' "Il~ i GIlT' ,/ , :))(, 
, (FT /8)' ,7X, ' (DEC f··";"fm, ' (DEG)' ,(;}(, ' (J.)IW)·' ,5}( 
, 'ClIANGE' ,uX, , (Lm~.>.' ,/ ,ag, ' -:-'---'---' ,ux. 
, ------ t • iJ..}{, ,---:.:..-~., ,(l'~(,' -----~---, ,li.~'·, 
,------. ,GX,'---:---' ,/) 
FOlU'JAT(' , "m,l"(j. ~,u~~, i"v. a, U;~,"'0. a, ·l,}(, li'6. a, tm. 
Fu.2,6X,F7.1,//t 
1,'OIlNAT(' ',' HOfIEffTS.·i\iH!: 'foGU BIG 1I1TH Ol!:LTAIl=' , 
1·'4. J ,:m, ' DECIlE/I.lJ I N('~ . hEL'I.'t:.H.' ) 
i,'OlU'lAT(' ',' ALJo'AU<o' , m:cm:fu,H NG irC:L'j'j.~n' ) 
UTOP . . 
ENO 

FIGURE 13 (cont.) 
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Wjf 
If-- d :---} I 
; r : 

L= Lift of Wing without Jet Flap(acts at Cmac ) 
-4-

LJ"f = Aerodynamic Lift Benefit of Jet Flap( acts at Cmac 
-2-

THf = Vertical Thrust of Front Nozzles 

TH = Vertical Thrust of Jet Flap( acts through flap hinge 
r 

Wjf = Weight of Jet Flap( acts through flap hinge ) 

Center of Gravity at Cmac 
-4-

Moments due to Canard and Reaction Control System neglected 

Moment due to vertical distance between nozzles neglected 

To Balance Aircraft 

Positive Pitching Moments = Negative Pitching f10ments 

= Ljf * Cmac + THr * d 
-4- r 

FIGURE 14 

Model 279-3JF Takeoff Balancing Criteria 

55 
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TIllS PROGRAM CALCULATE::; 'l1n~ INS'1'Alfl'AtnWUS TUnNING HATE AHD 
RADIUS FOR THE JET FLAPi'iw'r,wnm.:. 2~i'9-3, AT 10,00{1 1<"1'. 
AND IIIAClI .4 . 

VAlUABLE LISTlllG: 

V" VELOCITY 
TlIllG=RUR NOZZU'; (;l\nD~-j TUmJ:J'l' 
TlIJi'c=}I'ilOl'n., N()ZZ~ ,E GlHk;;:) 'l'liiWt;'j' 
U=DYNAPIIC l'IUW;';lIm: 
G=lHNG AHI~l\' 
HJlO=A'I'l\108PlI.l!:H I C IH~NS 1'\''1 
Tl\=TUHN I l'W HhTl!: 
N=LOAD fo'AG'I'OH(L/\/) 
L='l'OTAL LlF'l'( 11'ICLUn!i'W TllllUO'l' IN DIHEC'l'lOH OF LH"f) 
HAn I US= I N:JTl\Il'!'[\ ~';()US':,ruml f l'l~; llAD I US 
I'll I =TUHrHN(: II.IiCLK·· . . . 
lV=llEI GUT< 26260 Lui,')" 

r'HH.lilll';unum:. VII.~H Ii UtES 
KB=I'i\l\TlAL ·.Ul'I\lI. 'l"A(~rt!H . 
nO=FOUllI ml', em:}I'F.~·~( i!~N'l' 
nO=}I'OlHlI En m.HWI~'~te·J )!:H;J'· 
})CL~mp::: ))JtL'l'll,: (j, ~ (:N~~n;\~l; llll\l~: 
D1~I..Au'=elJ4-~Hm· III ,~~~O~~: ,~W :.il.·n:M~~(: DUI!: TO .1I!.'l' [,'LAl' 
J)GU1AK= m:L'fA f.:l. ( j.Jj~~: ) ',;,:,C, elflHWE r: (·If''·.f1/U{ CL 
DCLJl~=Cllt\l''/{;i~ 1 H il....:iWuYilidif(~ Lif"l'>;C no HUNiWTU\ll 'l'!!:lIl'l ) DUE TO 

JET }I'i.!)!' '. ',." ""'" , . 
CUl1\}{:::NA~' I hOd 1.1 !I"i: ·,f.61!ii"},· i Cf.El'fr 
C,J::CU::'.{'UHlHJ'l' cm:r"V.lnlEYfr~ . 
I\L\o'AO:-: i)O\'lf~:Il'::'Olo'l" : ;'(ALi~{Ji.ri!I;LE . Oil' : Al"fM:iC 
A U'AU= l'() 1'1 I m-:--{J'i r Ul',(d.::r(~~l{fi..l;:: O~;:"l\'l'rACl~ 
m:LTIUl=m:/\U' Hti':';:,:U!! :'A1J~;!;~i::(~jJ':J>rj'i.v.j"~: ;'W AIHCIWJi'i' CiWTji:m;I Hl!:) 
OEL'1'Al"=FHoN1' l'iH:(~:n:'i('MHa;{;:(m~LA'1'fvE TO A IIH;H,'J/'l'· 01.; i!:ll'i'.i!1tLI HI!;) 

• ~.' : .... , ,- J!;' ; . ;: '. 

" . :;: :~: ::: ::~ :;.; ::::-:: ;::,:~:-:::::~~ :-:::.:: ~:: ~;~ ~::~:~ ~;: ;;; ;;~ ~;-; ~i; ;;; ... ~:~: ~ ;.v;:;; :;: ::~;;; :;; :;: ;;; ~.:~~;;::: ';;: :::.:;: ::; ~~~~~.::-;: ;;;;~~ ~!.~~ ~;: :;: :;: ;:' :;~::; :;: :;~ :.; ::: :;; :;~ :,;:, ~:;: :;~:;;::; :': ~::: :,;::; 

FIGURE 15- Instanta"'~Q~~' :T~~nin:9:',perforOlClnce FORTRAN . Computer Program 
, ',.... '': ,r;., "" .. :~' . 
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C 
C 
C *DECLARATIONS* 

c 

nEAL no, DO, DELTAR, ALFAU, ALFAO., DELAL.l<'., DCLFlXP ,CJ 
HEAL A, 8 , VCMO~, KB • V • DCLl'IAX, qJ.l'~; IUio ~ Tn~'G; TIUtG 
IlEAL TR,L,N,PIII ,RADIUS '.' 
ilEAL DELRD . 

C *INITIALlZATI,ON* 

c 
c 
c 
c 

c 

V="!,30.96 
])ELTAR=1.57079 
TH[o'G=212tH. 
TlIllG= 12045 • 
lUlO= .0917666 

Ii Q=.5:ICRlIO*(V**2.) 
KU=.31J . 
0=428.4 
CJ = TURG/ Ul*S) 

*CALCULATE l'JAX LIFT.: AS PER HOOIUIOUSEREPORT* 
. ,,' ~ "' .... 

nO=.185*(CJ**.833) 
nO=.3204*(CJ**.6374) 
ALFAO=.6236 . 
.1\.= (UO:MLFAO+DO*DELTAR)/ ( 1 +llO/2. ) 
J)ELALF=.,...6*A 
ALl~AU=DELALF+ALFAO 
IF «DELTAU+ALFAU) ~GT;' 1.5'1071J)'nIl!:N. 

DELTAR=DELTAU-.017453 
GOTO 5 

gIiIHF 
J):: (3. +. 637:J;CJ ) / ( (j • + . 604*SOJl'j'( CJ H ; ~ru,;::CJ) 
Hel ,{oJ}{p= 5. 5:~3. 14159:~A:i:1f.' . 
VCr-.lOM\=CJ:J:SI N (DELTAR+ALl"AU) 
llCIJIIA}{=KJl:): (DCLHXP-VCI10I'ffi) 
CLflil..~{= 1 .9+DCLNAX .' 

FIGURE 15 (cont.) 
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c 
" \, 

C 

c 
c 
C 

C 
t.! 

111 

~~:!~! 
WO 

2 

*NOU CALCULATE. ,LOAD FJ\CTon,TURNINGRATE,AND TUIUHNG nADIUS* : .. " .';~~:? "1, . .,'... • .' ".: .' >:' " . 
L=(CLMAX)*Q*S+TDRG+,TIIFG 
n=V26260. . ~T)'f\::.;:::.', . . . 
Tll=32. 174/V*SQRT(N~*2'-.·n*18(r;/3 •. 14! 6926' 
PHI =ACOS<l'.0I'N).'·, > . . .... :. , .... ' '. 
IlADIUSaV**2/(32.:174¥,1'ANO'lII» . 

))ELRD= DELTAR* 1 B0 • /.3 ;.14 1U<) 
'VlllTE(6,100)TR~RADIUS',N,DEUlD 
mllTE( 6 .1ll)MO ~V.'.~~~,~~!· .:::.,'; .~.' '.. 
l~Om1A'l'(' t, '.FPR;';~():·=~'i~X,lq0.9,2X,:.~· V=·.' ,2X,F8.2) 
'mITE(6,222)'n'~.G{nlR.G ... ', :.:. ':,': '.';:,y~~<.\ :'. ' 
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loiter 
10 min. 
sea leve 

Vl 

, 
I 
I 
I 
f 

I 

~------------------~I '~<--100 mile dash~' I -----;;>"" I 
sea level I 

Mach .8 I 
I 

I.e:.<:::..-.------- rad ius ----------., >, 
I 

COMBAT- Drop Bombs 
- Retain Missiles 

5% Reserve Fuel 

No Fuel, Time, or Distance Credited for Descent 

BCAV= Best Cruise Altitude and Velocity 

VL= Vertical Landing 

STO= Short Takeoff (250 ft. maximum) 

FIGURE 16 

combat 
sea level 
5 min. 

Model 279-3 and 279-3JF Interdiction Comparison Mission Profile 
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4 MK 82 Bombs 

2 X 600 Gallon Fuel Tanks 

2 Short Range Air to Air Missiles (SRAAM) 

. GROSS TAKEOFF WEIGHT 

42,000 lbf. 

TAKEOFF DISTANCE 

250 ft. 

MISSION RADIUS 

152 miles 

FIGURE 17 

Model 279-3 Comparison Mission 
Configuration and Performance 
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4 MK 82 Bombs 

4 X 600 Gallon + 1 X 120 Gallon Fuel Tanks 

2 Short Range Air to Air Missiles (SRAAM) 

GROSS TAKEOFF WEIGHT 
(including .weight of Jet Flap) 

53,925lbf. 

TAKEOFF DISTANCE 

210 ft. 

MISSION RADIUS 

564 mil es 

FIGURE 18 

Model 279-3JF Comparison Mission (with added fuel) 

Configuration and Performance 
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14 MK 82 Bombs 

2 X 600 Gallon Fuel Tanks 

2 Short Range Air to Air Missiles (SRAAM) 

GROSS TAKEOFF HEIGHT 
(including weight of Jet Flap) 

54,0001bf. 

TAKEOFF DISTANCE 

211 ft. 

MISSION RADIUS 

174 miles 

FIGURE 19 

Model 279-3JF Comparison Mission (with added bombs) 
Configuration and Performance 
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12 
maximum thrust 

standard day (with Fan Str.eam Burning) 

8 
~I 

a 
Takeoff I -~ 

279-3 

Distance - - 279-3JF 

(x 100 ft.) 4 

FIGURE 20- Model 279-3 and 279-3JF Short Takeoff Capability 

C:TI 
w 

a From Reference 5 



Weight 
(lbf.) 

40573.3 

41265.9 

42002.0 

43435.4 

44166.9 

44908.6 

45660.8 

46423.7 

47197.5 

48737.7 

49545.1 

50321. 6 

51152.2 

52750.7 

53556.1 
54036.1 

55587.0 

56406.2 

Takeoff 
Distance 

(ft) 

61.1 

66.5 

72.2 

84.6 

91.3 

98.3 

105.8 

113.6 

121.9 

139.7 

149.3 

159.3 

169.9 

192.3 

204.3 
211.2 

236.6 

TABLE 2 

MUUEL 279-3JF UETAILEO TAKEOFF CONuITIUN~ 

(output from Program of Figure 13) 

li ft off Reara Fronta 
Velocity No.zzle Nozzle 
(ft/s) Ansle: (des) Ansle (des.) 

60 4.1.3. 85.0 

62 42~5· . 84.9 

64 44.0· 85.0 

68 46.5. 84;9 

70 47 ~8' 85:0 

72 49.0 84.9 
7,4 50.3 .84.9 

76 51~5 . 8.4:9 

78 52.8 84.9 
82 55 84.9 

84 56.3 85.U 

86 57.3 H4.9 

88 5U.5 85.U 

92 60.5 83.J 

94 61.5 82.3 --------
90.1 62.3 b1.8 

99 64 79.8 - - _._ .... -- ----- _.-
250.5 lUI 65 lU.S 

Sta 11 Aerodynamic 
Angle Jet Fla~ 
(des·) CL increase 

b.020 1.J8 

5.094 1.41 

5.016 1.4J 

b.09J 1.47 

5.11~ 1.4~ 

S.llb 1.!>u 

S.113 1.51 

b.096 1.5J 

5.U68 1.54 
5.1U6 1.b5 

5.047 1.bb 

5.102 lotit> 

5.025 1.b7 

5.UH4 1.b7 

5.099 1.bb 
b.OUl 1.5U 

5.100 1.!>b 

5.0Hb 1.!>b 0'\ 

""" 



TABLE 2 (continued) 

---'-'--

Weight Takeoff Li ft off Reara Franta 
(1 bf • ) U1stance Velocity Nozzle Nozzle 

(ft) (ft/s) Angl e' (deg) Angle (deg.) 

56817 .3 257.6 102 65.5 7B.3 
57642.2 272.4 104 66.5 77 .3 

58470.9 287.8 106 67.5 76.'i. 

59258.8 303.6 108 6H.3 75.2 

60094.7 320.3 110 69.3 74.~ 

60399.6 334.6 112 67.3 73.0 
60781.8 349.7 114 65.8 . 7l.H -
61157.5 365.3 116 '64.3 7U.7 

" 

61575.4 381.7 118 63,.0 69.6 

61988.8 398.5 1~0 61.8 6H.5 

62397.4 415.7 122 60:~5 6i.4 ---.-
62801.3 433.5 124 59.3 6ti.4 

63200.3 451.7 126 58.0 65.4 

64466.0 469.5 128 57.0 64.4 

aRelative to aircraft centerline 

Stall 
Angle 
(dea·) 

5.U76 

!>.US1 

b.01ti 

5.U~W 

5.044 

6.3U1 

7.317 

ti.31'i. 

9.181 

lU.UJ~ 

10.H66 

11. 6ti5 

12.4tiH 

U.172 

Aerodynamic 
Jet Flap 

CL increase 

1.5B 
1. !)ti 

1. !>7 

1.51 

1.57 

1.51 

1.40 

1.41 

1.J7 

l.J~ ---
1.2H 

1.24 

1.d 

1.17 

0'1 
01 



Aircraft 

279-3a 

279-3JF 

aReference 5 

TABLE 3 

MODEL 279-3 and 279-3JF 

INSTANTANEOUS TURNING PERFORMANCE 

Maximum Thrust with Thrust Vectoring 

Sea Level 10,000 ft. 20,UUU ft. 
Mach .3 Mach .4 Mach .5 

Turning Turning Turning Turning Turning Turning 
Rate Radius Rate Radius Ra te . Ra diu s 

~egree, (ft) (oegree~ ( ft) ~egre~~ (ft) sec sec sec 

28 641 19.5 1264 17.0' 1704 
_._._. __ " ___ __ 0-

38.0 505 31.4 7B6 24.9 1194 

30,UOO ft. 
Mach .6 

Turning Turning 
Kate Radius 

(uegree9 (ft) 
sec 

13.0 2tiU 

18.8 UH3 

~ 
~ 



aReference 9 

TABLE 4 
INSTANTANEOUS TURNING RATES OF 279-3JF 
AND OTHER AMERICAN AND SOVIET FIGHTERS 

~egree~ 
Turn Rate sec 

AIRCRAFT at 
15,000 ft. Mach. 5 

Model 279-3JF 30.0 

Mig-21a 13.4 

F5-Ea 11.4 

Mig-23a 8.6 

F-4a 7.8 

F-15a 16.5 

F-16a 15.6 
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1 oi ter 
10" min. 
sea level 

VL 

VTO 

40,000 tt.> 
varying Mach # 

I 
I 
I 

~-------radi us ______ ---..:>~: 

I 

combat 
40,000 ft. 
2 min. 

Armament- 2 Advanced f1edium Range Air to Air 'Missiles 
(At~RAAM) 

- 2 Short Range Air to Air Missiles (SRAAM) 

Combat- Retain all Missiles 

No Fuel, Time, or Distance Credited for Descent 

BCAV= Best Cruise Altitude and Velocity 

VL= Vertical landing 

VTO= Vertical Takeoff 

5% Reserve Fuel 

FIGURE 21 

Model 279-3 Deck Launched Intercept Mission Profile 
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400 

350 

100 

50 
0.6 0.8 1.0 1.2 .1.4 1.6 1.8 2.0 

Cruise-Out Mac~ Number 

FIGURE 22 0, 
\.0 

Model 279-3 Deck Launched Intercept Mission Performance 



loiter 
sea level 
10 min. 

combat 
sea level 

\ 5 min. 
I 

\ ~ash I 
\ sea leve d varied 
I d· t & spee I 

\ 
\ 
\ , 

~I radi~s . 

\ 
\ 

Armament- 14 MK.82 Bombs 
- 2 Shorf Range Air to Ai"r r~is$liles (SRAAM) 

Combat- Drop Bombs 
- Missiles Retained 
- 2 X 600 Ga 11 on Fuel Tanks Drupped \~hen Empty 

No Distance. Time, or Fuel Credited for Descent 

BCAV= Best Cruise Altitude and Velocity 

5% Reserve Fuel 

FIGURE 23 

Model 279-3 Interdiction Mission Profile 
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600 

400 

RADIUS 
NM a 

200 

a 
a 40 

. D.8S .... 

80 120 160· 
a 

SEA LEVEL DASH DISTANCE - NM 
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1 

200. 240 280 

----- ACSYNT Model 279-3 

---- McAir Model 279-3 

aNautical Miles 

FIGURE 24 
Model 279-3 Interdiction Mission Performance 
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APPEND! X B 

THE· MODELED 279-3 

Model;ng the 279-3 was accomplished by using NASA·ls IIAircraft 

Synthesis" (ACSYNT) FORTRAN program, which is briefly explained in 

the text. The computer modeled aircraft is an important design tool. 

Data can be obtained for the 279-3 on any desired mission, and is not 

1 imited to that suppl ied by the contractor. This is important because 

the 250 ft. takeoff distance interdiction mission chosen to compare 

the 279-3 and the 279-3JF was not studied by the contractor. Once the 

effect of the jet flap is determined, the modeled 279-3 can be altered 

by merely changing program input variables, to model the 279-3JF. 

Thus, the modeling technique made it possible to compare the mission 

performance of the two ai rcraft. 

Even though the mission studied in this report was not studied 

by the contractor, it is still important to compare the ACSYNT modeled 

279-3 to the McAir modeled 279-3. This ensures that the model is 

correct, and cal ibrates the contractorl·s perfonnance estimates. For 

this purpose, the ACSYNT model was examined on two missions studied by 

McAir. The first mission is the deck launched intercept mission given 

in Figure 21. The mission perfonnance is given in Figure 22. Note 

that the ACSYNT model produced a wider range of data than that provided 

by the contractor, which was useful in ev·al uating the 279-3. The 

slight departure in the ranges between the two aircraft at Mach 1.6 is 

due to the slight inaccuracies of the ACSYNT engine model. Modeling 
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the engine over the entire Mach nunber and al ti tude envelope of the 

aircraft is a difficult task. In order to obtain the highest degree 

of accuracy in-the more typical- high'altitude and high subsonic flight

regimes, accuracy was sacrificed in supersonic (above Mach 1.5) and 

very low altitude (below 10,000 ft.) f1 ight. It should be noted that 

engine data used by i4cAi r was propri etary ill nature, and was 'not 

available. The ACSYNT engine was modeled using data from state of 

the art engine prediction codes and represents an excellent approxima

tion. Considering this, the correlation between the two curves is 

very good. It is interesting to note, in Figure 22, the rapid drop 

in range, with cruise out Mach nunbers of around one. This is because 

the engine must produce more thrust to overcome wave dray, increasir1~ 

fuel consumption. 

The second mission used to compare the two models of the 27!1-3 

is the interdiction mission described in Figure 23. The performance 

of the two models are plotted in Figure 24. Notice that as the sea 

level dash distance increases, the two models deviate in mission 

radius. This indicates that the difference in performance is due to· 

the low 1 evel inaccuracies of the ACSYNT engine model. In fact, with 

no low level dash distance, the two aircraft ranges agree within 26 

miles, out of a total mission radius of 650 miles. This is a differ

ence of only four percent and demonstrates ACSYNT I· S high degree of 

accuracy. 

Si nce the ACSYNT model compares favorably to the MeAi r Model 

279-3, it can be modified to predict the performance of the jet 

flapped 279-3JF. Any slight errors that exist in the ACSYNT model 
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279-3 do not affect its comparison to the 279-3JF, because these errors 

are common to both aircraft. 

, 
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